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The separation of Newtonian shock layers 

By J. R. OCKENDON 
S t  Catherine’s College, Oxford 

(Received 7 December 1965 and in revised form 5 April 1966) 

The separation points which occur in the Newtonian theory of hypersonic flow 
are treated by locally modifying the shock-layer equations. This approach leads 
to direct verification of the free-layer theory for separation on certain bodies 
with discontinuous curvature. Separation points on bodies with continuous 
curvature have already been treated by matching the upstream shock-layer 
solution to  the downstream free-layer solution. The agreement that is found 
between these results and those of the present approach provides further con- 
firmation of the free-layer theory. 

1. Introduction 
In  the Newtonian theory of hypersonic flow, Hayes & Probstein (1959) and 

Lighthill (1 957) have suggested that the solution downstream of a separation point 
takes the form of a ‘free layer’. This is a high-density layer close to the shock 
wave, but separated from the body by a very-low-density region. The first 
approximation to the free-layer’s shape is given by the condition that the 
pressure along its base should vanish. 

The plausibility of the free-layer theory has been demonstrated by Freeman 
(1960) for the case of the separation point on a sphere. Comparison of the shock- 
layer solution upstream of the separation point with the free-layer solution down- 
stream enables the orders of magnitude of the flow variables to be found in the 
separation region itself as y, the ratio of specific heats of the gas, tends to unity. 
By scaling with respect to these orders of magnitude and then letting 

an ordinary differential equation for the shock shape can be deduced which is 
uniformly valid throughout the separation region. In particular, the distance 
from the body to the shock is found to be of order €A. The same technique has 
also been applied to other body shapes by Bausch (1962). 

Freeman also suggested that the singularity in Newtonian shock-layer theory 
a t  a separation point results from neglecting the curvature of the streamlines 
relative to the body. We shall thus consider separation points from a different 
point of view, namely by modifying the shock-layer equations and not using the 
notion of a free layer at all. The agreement we shall find between this approach 
and the results of Freeman and Bausch may then be regarded as indirect verifica- 
tion of the free-layer theory. 

Newtonian separation points occur on convex bodies which either have suffi- 
ciently large continuous curvature or else a sufficiently large curvature dis- 

e = (7- 1)/(7+ 

36-2 
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continuity, and we shall term these natural and artificial separation points, 
respectively. We shall first use the modified shock-layer equations to obtain 
direct agreement with the free-layer theoly for a simple case of artificial separa- 
tion, and then apply them to natural separation points and in particular the case 
of the sphere. We shall, however, exclude body shapes which are so blunt that the 
shock-layer solution upstream of the separation point cannot be found by a series 
expansion in powers of E (Freeman 1956). 

2. The shock-layer equations near separation points 
Suppose a uniform inviscid perfect-gas stream with velocity 77, and density 

pa flows at infinite Mach number past a two-dimensional or axisymmetric 
convex obstacle. In  the region between the shock wave and the body let p, p, u. 

~-~~ ~ ~ 

FIGURE 1. The curvilinear co-ordinate system. 

and v be the pressure, density and tangential and normal velocity components, 
non-dimensionalized with respect to pa U,Z, pa and U, respectively. If x and y are 
the curvilinear co-ordinates shown in figure 1, and $ is the stream function, the 
equations of motion with x, @ as independent variables are 

av . aP a 
ax a$ ax -- KU + hrl - = 0, - (p/py) = 0, 

(2.1 a) 

(2.1 b, c )  

(2 .14  e )  

where K is the body curvature, h = 1 + KY, r is distance from the axis andj  = 0 or 1 
in two-dimensional and axisymmetric flow respectively. The boundary condi- 
tions are 

y = O  on $ = O  (2.2 u)  

(2.2c) 

p = (1-s)sin2(gl+ a), p = I/€, (2.2 d, e )  

and u= cos(q5+6)cos6+ssin(gl+S)sinS, ( 2 . 2 b )  

v = E sin (q5 + 6) cos 6- cos (4 + 6) sin 6, 



T h e  separation of Newtonian shock layers 565 

on the shock y = y,(x), where tan6 = yL(x), $ (x )  is the body inclination and 
B = (y  - l ) / ( y  + 1) .  The first-order Newtonian solution is found by putting u = uo, 
v = cv0, p = po, p = c-lpO, y = €yo and letting B+ 0. Hence 

uo = cos4(5), ( 2 . 3 a )  

(2 .3  b )  

(2 .3d )  

uo = uoayo/ax, (2 .3e )  

where 6 is the x co-ordinate of the intersection of the streamline through ( x ,  $) 
with the shock wave as e+O, and @ = l/(j+ 1) R$+l([) = Y(c), whereR(x) is the 
body thickness. We shall exclude body shapes which are so blunt that (2 .3d )  does 
not converge, at least in a region sufficiently near the nose. 

If po(xo, 0) = 0 on a body with continuous curvature, then we shall call x = xo 
a natural separation point. Any curvature discontinuity at x = xo produces a 
discontinuity inpo there, but if it is large enough to make p,,(xo + , 0) < 0, we shall 
call x = xo an artificial separation point. In  either case yo becomes infinite at 
z = xo for @ > 0 and the derivation of (2 .3 )  is in error in neglecting, for example, 
B (a2y/az2) compared with y for x-xo  sufficiently small. Now Bernoulli's equa- 
tion is 

and, for all the cases we shall consider, clogp, y and ay/ax will tend to zero either 
as E + O  or as x+x,,. 

Thus, in the neighbourhood of a separation point, we approximate ( 2 . l b )  by 

u2 = cos24(g) + o(Eiogp, uyay/ax)2), 

Making similar approximations in the entropy equation (2.1 c )  and the boundary 
conditions (2 .2)  gives 

E sin2 q5 (5)  ay - - _  

1' a' ~ i ( x ) c o s f i ( c )  

or, if g = €8, 

with boundary conditions 
g = O  on @ = O ,  

and 

( 2 . 6 ~ ~ )  

(2 .6b )  

(2 .6b )  is just the condition for the streamlines to have the correct inclination 
to the shock in the Newtonian limit. The term in a2g/ax2 in (2 .5 )  is thus a per- 
turbation of the trivial differential equation obtained by differentiating the 
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unmodified first-order equation for y. It is only near the separation point that it 
has to be taken into account. 

Since natural and artificial separation points require different mathematical 
techniques, we shall consider them separately. 

3. Artificial separation 
We shall just consider the simple case of a wedge of angle a smoothly joined 

at  0 to a cylinder of initial curvature K (figure 2 ) .  The Newtonian theory of flow 
past slender bodies of this shape without separation has been studied by Cole 

FIGURE 2. Curvature discontinuity on a wedge. 

(1965), who found that for small x, E can be eliminated by the scaling X = xle. 
Making this substitution and letting e+ 0, (2.5) becomes, in the neighbourhood 
of 0, 

with ij = 0 on $ = 0 and @/a$ = l/cos a on $ = $,. Putting Y = y - & K X ~ ,  this 
gives 

with Y = - ~ K X ~  2 on @ =  0, aY/a$= l/cosa on @ =  $, ( 3 . 2 a , b )  

and, from ( 2 . 3 d )  applied to the wedge, 

Y = $/cos~ ,  aY/aX = 0 on X = 0. ( 3 . 2 c , d )  

In  the (X, $)-plane, Cole found the solution downstream of the characteristic 
X = $/sina, represented by OA in figure 3, in the parametric form 

Y = - ~ K X ;  + (K$/sin a) { X ,  - tan E / K )  exp (KX,/tan a), (3.3 a )  

X = X, + ($/sin a) exp (KX,/tan a). (3 .3  b )  

The reflected characteristic AB was found to intersect y i  = 0 provided 
h = K$, cosa- sin2a < 0 ,  but, if h > 0, the simple wave solution (3.3) persisted 
near the body, with the surface pressure being of order exp ( - X). Since ( - A )  is 
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the surface pressure just downstream of 0 as predicted by (2 .3b ) ,  this result in 
itself provided some confirmation of the free-layer hypothesis. Finally, for the 
case h = 0 the solution in the interaction region between AB and the shock wave - 

Y = *log---+tanaX+--. $ K x 2  
tan2 a was found to be 

cosa @o 2 2 K  
( 3 . 4 )  

*O 

0 x 
FIGURE 3. Characteristics in the ( X ,   plane. 

We shall now consider the solution in the interaction region when h > 0. 

ay ay 
ax a$ 

Putting 
@(r,s) = X-++-- Y, 

where 
1 ay ay 

r = - ilogcosa-- -- tlog&p 4 tan a ax 
aY 

+&log- 
1 aY 

all.' 
and s = $logcosa--- 

4tanaaX 
linearizes (3 .1 )  to give 

a2@ a@ a@ 
aras ar as 

f- = 0. _ _ _ _  

The boundary condition on AB becomes, from (3 .3 ) ,  
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and evaluating ! A d s  - I’ dr around the triangle (0 ,  0) ,  (0 ,  y), ( 7 , ~ )  gives 

@ ( 7 , r ) + F ( 7 )  = 2 J 1 @ ( s , s ) J o ( z ( 7 - s ) ) a s ,  0 (3.5) 

J 0  

where * 1 Jo( 2 (7 - s) ) as. 
cosa 0 

tan2 a 7/ (2s - 82) e-SJo(24{7(7 - 8))) ds + F(7)  = -y- 

This is an integral equation for the shock shape, for if Y = Y, on the shock, then 

y, = (+o/cos a )  +X(dY, /dX)  - w77 r ) ,  (3-6) 
where dY,/dX = - 4 tan a7. (3.7) 

Substituting the exact solution (3.4) when h = 0 into (3 .5)  gives the identity 

- (9 + 272) +S7/ (2s-s2)e-S~,(2, / {9(7-  s)) )ds+j7/  ~ ~ ( 2 ( 7  - s ) )  cis 
0 0 

= - 2 so” (8 + 282) J,( 2(7 - 8 ) )  as. 

Hence, putting 
4 tan2 a 

C O S a  K 
w77 7)  + 7 

(3.5) becomes 

where 
p = 2 (-----). +,, tan2a 

COSU K 

Differentiating (3.8) three times and using the identity 

gives 

whence 

The shock shape is thus given parametrically by (3.7) and 

=------- tang lu Jo(27) 

This last equation may be integrated to give 

where the constant of integration has been evaluated by expanding for small 7 
and using (3.8). Finally, from (3.7) and (3.9), 

@o t ana  
‘ 0  4tana  __ +---) 7 2  ( sina K 

ys = __- 
cos a 

- p  [7J0(2q)-272J~(27)+4(q2- 1) 1: 4(2u)du I . (3.10) 
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Thus, as X+ co, &-+ ($o/cos a) - (sin2 a/23ho cos a) X 2  for all K > sin2 a/@o cos a 
and so, as E + 0 the shock shape near 0 tends to 

This is exactly the free-layer solution near 0, as found by equating (2.3b) to zero 
and choosing the solution which touches the body at 0. 

1 *o 

0.0 
y, 

- 1.0 

- 2.0 
1 *o 2.0 3.0 4 0  

X 

FIGURE 4. The shock waves in the ( X ,  Y)-plane. 

I n  figure 4, Y,  is plotted for different values of K > I/ ,/2 with a = &r and $o = 1. 
The curves all tend to the same parabola, displaced different distances in the 
X-direction. 

4. Natural separation 
The uniformly valid solution a t  a natural separation point does not exhibit 

discontinuous derivatives and thus may be treated by normal singular- 
perturbation techniques. In  contrast to the case considered above, the solution 
of (2.5) now differs from the unmodified solution (2.3d) everywhere, but only 
markedly so near the separation point. 
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Let us first consider the case of a sphere of radius a, taking the origin of the 
curvilinear co-ordinates at the upstream stagnation point. Putting 6' = x/a, 
6 = (/a, the separation point is at  8 = 8, = in- and (2 .5 )  becomes 

with ? j = O  on ( = O ,  (4.2 a) 

and agjat = acot8 on 8 = 6. (4.2 b )  

Equation (4.1) may be treated by Lighthill's (1949) technique, in which both 
the independent and dependent variables are expanded as power series in 8, 

(4.3 a) 

(4.3 b)  

For our special case x1 does not have to depend on <. Lighthill's hypothesis is that 
if xl, xz . . . are chosen so as to eliminate the worst singularities in yl, yz . . . respec- 
tively as z+O, then (4.3a) and (4.3 b )  will converge uniformly in a neighbourhood 
of x = xo which does not vanish as E-+ 0. The solution for yo satisfying 

and 

is 

yo= 0 on + =  0, 

ayojag = a cot 6 on 5 = in- + z ,  

as z + 0 for 5 > 0. The equation for y1 is thus 

where we have neglected terms which are small compared with a2yo/az2 as z+ 0. 
The boundary condition on the shock wave is 

[2 ] (4.6a) 
a 
a6 
-(ij-yo) = - a~~~(z )cosec2(~n-+z ) -  --acot(Qn+z) 

on g = Q n - + Z + € X 1 ( Z ) +  ...) (4.6 b )  

since, in (4.6b), x1 will be large compared to yo as z+O. Thus we may take 

on 

ayl/a6 = axl(z) (4  - cosecz( in- + z ) )  

6 = +n-+z. 

(4.5) may now be integrated to give 

y1 = gsin2(+n-+z)cos(+n-+z) ( 4 - ~ o s e c ~ ( ~ n + z ) ) a ~ ~ + 1 ~ ,  

where 

and 
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Now Il = K( -z)-++O(~-l)  
as x + O  for 6 > 0, where 

571 

Also 

where 

as z+O for $ > 0. Thus 

5naK 
2.33 

( - 2)-u + O( ( - z ) - Y )  - - -__ 

as z -+ 0 for 6 > 0. In this limit, therefore, 

57raK 
y1 = 9aKxl(z) ( - z)-% - __ 

2.33 

and so we can eliminate the worst singularity in yl by choosing 

57T 
2.3g 

zl(z) = __ ( -z)-%. 

Hence the first approximation to which is uniformly valid in the range 
0 < 8 <  Qnis 

where 

At 8 = $ 7 ~  the first approximation to y is about 2&a for ( > 0 independently of 6. 
Physically this means that the streamlines bunch near the shock wave at  13 = in. 
Only those streamlines for which @ = O ( d i )  lie between the shock and the body 
and in this region and on the body the pressure is of O(sA). These orders of 
magnitude justify the assumptions made in deriving (4.1). 

This bunching of the streamlines was first mentioned by Freeman (1960). His 
matching method gave the distance from the shock to the body at  8 = Q7i- as 
about 2.6eAa. 

The above method is applicable to natural separation points on any two- 
dimensional or axisymmetric body which has a first-order shock-layer solution 
of type (2.3). In particular, for pointed bodies the orders of magnitude are not as 
awkward as for the sphere. Then the problem can be treated quite generally, 
assuming only that the body pressure is monotonically decreasing at the separa- 
tion point. This approach gives the distance from the shock to the body there as 
- {tan2ao/3~(zo)} slog E to first order, where aO is the inclination of the body a t  
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the nose. This is in exact agreement with the results of Bausch (1962) who con- 
sidered the problem by matching methods similar to those of Freeman. 

The Author would like to thank Dr A.B.Tayler, Dr N.C.Freeman and 
Dr D.A.Spence for many helpful discussions during the preparation of this 
paper. 
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